AdamW — PyTorch 1.10.1 documentation
pytorch.org › generated › torchAdamW. class torch.optim.AdamW(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0.01, amsgrad=False) [source] Implements AdamW algorithm. input: γ (lr), β 1, β 2 (betas), θ 0 (params), f ( θ) (objective), ϵ (epsilon) λ (weight decay), a m s g r a d initialize: m 0 ← 0 (first moment), v 0 ← 0 ( second moment), v 0 ^ m a x ...
AdamW — PyTorch 1.10.1 documentation
https://pytorch.org/docs/stable/generated/torch.optim.AdamW.htmlAdamW. class torch.optim.AdamW(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0.01, amsgrad=False) [source] Implements AdamW algorithm. input: γ (lr), β 1, β 2 (betas), θ 0 (params), f ( θ) (objective), ϵ (epsilon) λ (weight decay), a m s g r a d initialize: m 0 ← 0 (first moment), v 0 ← 0 ( second moment), v 0 ^ m a x ...
AdamW Explained | Papers With Code
paperswithcode.com › method › adamwAdamW is a stochastic optimization method that modifies the typical implementation of weight decay in Adam, by decoupling weight decay from the gradient update. To see this, L 2 regularization in Adam is usually implemented with the below modification where w t is the rate of the weight decay at time t: g t = ∇ f ( θ t) + w t θ t.