Finite difference - Wikipedia
https://en.wikipedia.org/wiki/Finite_difference Finite difference is often used as an approximation of the derivative, typically in numerical differentiation. The derivative of a function f at a point x is defined by the limit. If h has a fixed (non-zero) value instead of approaching zero, then the right-hand side of the above equation would be written
Finite Difference Approximations
web.mit.edu › 16 › BackUpThe finite difference approximation is obtained by eliminat ing the limiting process: Uxi ≈ U(xi +∆x)−U(xi −∆x) 2∆x = Ui+1 −Ui−1 2∆x ≡δ2xUi. (96) The finite difference operator δ2x is called a central difference operator. Finite difference approximations can also be one-sided. For example, a backward difference approximation is, Uxi ≈ 1 ∆x
Finite Difference Methods
web.mit.edu › course › 16Example 1. Finite Difference Method applied to 1-D Convection In this example, we solve the 1-D convection equation, ∂U ∂t +u ∂U ∂x =0, using a central difference spatial approximation with a forward Euler time integration, Un+1 i −U n i ∆t +un i δ2xU n i =0.