BatchNorm2d — PyTorch 1.11.0 documentation
https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm2d.htmlBecause the Batch Normalization is done over the C dimension, computing statistics on (N, H, W) slices, it’s common terminology to call this Spatial Batch Normalization. Parameters num_features – C C from an expected input of size (N, C, H, W) (N,C,H,W) eps – a value added to the denominator for numerical stability. Default: 1e-5
InstanceNorm2d — PyTorch 1.11.0 documentation
pytorch.org › torchclass torch.nn.InstanceNorm2d(num_features, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False, device=None, dtype=None) [source] Applies Instance Normalization over a 4D input (a mini-batch of 2D inputs with additional channel dimension) as described in the paper Instance Normalization: The Missing Ingredient for Fast Stylization.
BatchNorm2d — PyTorch 1.11.0 documentation
pytorch.org › docs › stableBecause the Batch Normalization is done over the C dimension, computing statistics on (N, H, W) slices, it’s common terminology to call this Spatial Batch Normalization. Parameters num_features – C C from an expected input of size (N, C, H, W) (N,C,H,W) eps – a value added to the denominator for numerical stability. Default: 1e-5