BCEWithLogitsLoss — PyTorch 1.10.1 documentation
pytorch.org › torchBCEWithLogitsLoss. class torch.nn.BCEWithLogitsLoss(weight=None, size_average=None, reduce=None, reduction='mean', pos_weight=None) [source] This loss combines a Sigmoid layer and the BCELoss in one single class. This version is more numerically stable than using a plain Sigmoid followed by a BCELoss as, by combining the operations into one ...
BCEWithLogitsLoss - PyTorch - W3cubDocs
docs.w3cub.com › torchBCEWithLogitsLoss class torch.nn.BCEWithLogitsLoss(weight: Optional[torch.Tensor] = None, size_average=None, reduce=None, reduction: str = 'mean', pos_weight: Optional[torch.Tensor] = None) [source] This loss combines a Sigmoid layer and the BCELoss in one single class.
Python Examples of torch.nn.BCEWithLogitsLoss
www.programcreek.com › torchThe following are 30 code examples for showing how to use torch.nn.BCEWithLogitsLoss().These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
torch.nn.modules.loss — PyTorch 1.10.1 documentation
pytorch.org › docs › stableclass TripletMarginWithDistanceLoss (_Loss): r """Creates a criterion that measures the triplet loss given input tensors :math:`a`, :math:`p`, and :math:`n` (representing anchor, positive, and negative examples, respectively), and a nonnegative, real-valued function ("distance function") used to compute the relationship between the anchor and positive example ("positive distance") and the ...