BERT - Hugging Face
huggingface.co › docs › transformersBERT is a model with absolute position embeddings so it’s usually advised to pad the inputs on the right rather than the left. BERT was trained with the masked language modeling (MLM) and next sentence prediction (NSP) objectives. It is efficient at predicting masked tokens and at NLU in general, but is not optimal for text generation.
NuGet Gallery | BertTokenizer 1.0.0
https://www.nuget.org/packages/BertTokenizerpaket add BertTokenizer --version 1.0.0. The NuGet Team does not provide support for this client. Please contact its maintainers for support. #r "nuget: BertTokenizer, 1.0.0". #r directive can be used in F# Interactive, C# scripting and .NET Interactive. Copy this into the interactive tool or source code of the script to reference the package ...
text.BertTokenizer | Text | TensorFlow
www.tensorflow.org › python › textFeb 11, 2022 · tokenizer = BertTokenizer( vocab_lookup_table='/tmp/tok_vocab.txt') text_inputs = tf.constant( ['greatest'.encode('utf-8')]) tokenizer.detokenize( [ [4, 5]]) <tf.RaggedTensor [ [b'greatest']]> Returns A RaggedTensor with dtype string and the same rank as the input token_ids . split View source split( input ) Alias for Tokenizer.tokenize.
BertTokenizer - Stack Overflow
stackoverflow.com › questions › 58979779Nov 21, 2019 · import torch from transformers import BertTokenizer tokenizer = BertTokenizer.from_pretrained ('bert-base-cased') test_string = 'text with percentage%' # encode Converts a string in a sequence of ids (integer), using the tokenizer and vocabulary. input_ids = tokenizer.encode (test_string) output = tokenizer.decode (input_ids)