THE CHAIN RULE IN PARTIAL DIFFERENTIATION
wwwf.imperial.ac.uk/~jdg/AECHAIN.PDF2 Chain rule for two sets of independent variables If u = u(x,y) and the two independent variables x,y are each a function of two new independent variables s,tthen we want relations between their partial derivatives. 1. When u = u(x,y), for guidance in working out the chain rule, write down the differential δu= ∂u ∂x δx+ ∂u ∂y δy ...
Chain rule - Wikipedia
https://en.wikipedia.org/wiki/Chain_ruleThe generalization of the chain rule to multi-variable functions is rather technical. However, it is simpler to write in the case of functions of the form As this case occurs often in the study of functions of a single variable, it is worth describing it separately. For writing the chain rule for a function of the form
Chain rule - Wikipedia
en.wikipedia.org › wiki › Chain_ruleThe chain rule for total derivatives implies a chain rule for partial derivatives. Recall that when the total derivative exists, the partial derivative in the ith coordinate direction is found by multiplying the Jacobian matrix by the ith basis vector. By doing this to the formula above, we find: