torch.Tensor — PyTorch 1.10.1 documentation
pytorch.org › docs › stabletorch.ByteTensor. /. 1. Sometimes referred to as binary16: uses 1 sign, 5 exponent, and 10 significand bits. Useful when precision is important at the expense of range. 2. Sometimes referred to as Brain Floating Point: uses 1 sign, 8 exponent, and 7 significand bits. Useful when range is important, since it has the same number of exponent bits ...
torch.Tensor — PyTorch 1.10.1 documentation
https://pytorch.org/docs/stable/tensorstorch.ByteTensor. /. 1. Sometimes referred to as binary16: uses 1 sign, 5 exponent, and 10 significand bits. Useful when precision is important at the expense of range. 2. Sometimes referred to as Brain Floating Point: uses 1 sign, 8 exponent, and 7 significand bits. Useful when range is important, since it has the same number of exponent bits ...
Python Examples of torch.IntTensor
www.programcreek.com › 101247 › torchdef cast_type(var, dtype, use_gpu): if use_gpu: if dtype == INT: var = var.type(th.cuda.IntTensor) elif dtype == LONG: var = var.type(th.cuda.LongTensor) elif dtype == FLOAT: var = var.type(th.cuda.FloatTensor) else: raise ValueError('Unknown dtype') else: if dtype == INT: var = var.type(th.IntTensor) elif dtype == LONG: var = var.type(th.LongTensor) elif dtype == FLOAT: var = var.type(th.FloatTensor) else: raise ValueError('Unknown dtype') return var