Pytorch nn.CosineEmbeddingLoss() 学习_CharpYu的博客-CSDN博客
https://blog.csdn.net/weixin_44385551/article/details/11924904430.07.2021 · CosineEmbeddingLoss 余弦相似度损失函数,用于判断输入的两个向量是否相似。 常用于非线性词向量 学习 以及半监督 学习 。 对于包含 NN N个样本的batch数据 D (a,b,y)D (a,b,y)D (a,b,y)。 aaa,bbb 代表模型输出,yyy代表真实的类别标签,yyy中元素的值属于 {1,−1}\ {1,-1\} {1,−1},分别表示相似与不相似。 第iii个样本对应的 losslossloss ,如下: li= {1− co s (ai,bi), …
CosineEmbeddingLoss — PyTorch 1.10.1 documentation
pytorch.org › torchThis is used for measuring whether two inputs are similar or dissimilar, using the cosine distance, and is typically used for learning nonlinear embeddings or semi-supervised learning. The loss function for each sample is: loss ( x, y) = { 1 − cos ( x 1, x 2), if y = 1 max ( 0, cos ( x 1, x 2) − margin), if y = − 1.
Does CosineEmbeddingLoss support ... - discuss.pytorch.org
discuss.pytorch.org › t › does-cosineembeddinglossMar 27, 2018 · Suppose I have a feature map of size 10x10, where each element is a 2D embedding, and I want to calculate the cosine embedding loss of two such tensors (2x10x10). I tried the following approach, loss_func = nn.CosineEmbeddingLoss() a = Variable(torch.randn([1,2,10,10]), requires_grad=True) b = Variable(torch.randn([1,2,10,10]), requires_grad=True) c = Variable(torch.from_numpy(np.ones([1,10,10 ...