18.1 - Covariance of X and Y | STAT 414
online.stat.psu.edu › stat414 › lessonLet X and Y be random variables (discrete or continuous!) with means μ X and μ Y. The covariance of X and Y, denoted Cov ( X, Y) or σ X Y, is defined as: C o v ( X, Y) = σ X Y = E [ ( X − μ X) ( Y − μ Y)] That is, if X and Y are discrete random variables with joint support S, then the covariance of X and Y is: C o v ( X, Y) = ∑ ∑ ...
Covariance - Wikipedia
https://en.wikipedia.org/wiki/CovarianceIn probability theory and statistics, covariance is a measure of the joint variability of two random variables. If the greater values of one variable mainly correspond with the greater values of the other variable, and the same holds for the lesser values (that is, the variables tend to show similar behavior), the covariance is positive. In the opposite case, when the greater values of one variable mainly c…