Deep learning - Wikipedia
https://en.wikipedia.org/wiki/Deep_learningArtificial neural networks (ANNs) or connectionist systems are computing systems inspired by the biological neural networks that constitute animal brains. Such systems learn (progressively improve their ability) to do tasks by considering examples, generally without task-specific programming. For example, in image recognition, they might learn to identify images that contain cats by analyzing example images that have been manually labeledas "cat" or "no cat" and using t…
Deep Neural Networks - Tutorialspoint
www.tutorialspoint.com › python_deep_learningA deep neural network (DNN) is an ANN with multiple hidden layers between the input and output layers. Similar to shallow ANNs, DNNs can model complex non-linear relationships. The main purpose of a neural network is to receive a set of inputs, perform progressively complex calculations on them, and give output to solve real world problems like classification.
Neural networks and deep learning
neuralnetworksanddeeplearning.comDeep learning, a powerful set of techniques for learning in neural networks Neural networks and deep learning currently provide the best solutions to many problems in image recognition, speech recognition, and natural language processing. This book will teach you many of the core concepts behind neural networks and deep learning.