How do you find the derivative of y=sqrt(x−3) using the limit ...
socratic.org › questions › how-do-you-find-theSep 18, 2017 · Given: f(x) = y = sqrt(x−3) Then: f(x+h) = sqrt(x+h−3) Using the limit definition: f'(x) = lim_(h to 0) (f(x+h)-f(x))/h Substitute in the functions: f'(x) = lim_(h to 0) (sqrt(x+h−3)-sqrt(x−3))/h We know that, if we multiply the numerator by sqrt(x+h−3)+sqrt(x−3), we will eliminate the radicals but we must, also, multiply the denominator by the same thing: f'(x) = lim_(h to 0) (sqrt(x+h−3)+sqrt(x−3))/(sqrt(x+h−3)+sqrt(x−3))(sqrt(x+h−3)-sqrt(x−3))/h Please observe that ...
How do you find the derivative of sqrt( x+1 ) using limits ...
socratic.org › questions › how-do-you-find-theMar 21, 2017 · d/dx(sqrt(x+1)) =1/(2sqrt(x+1)) By definition: (df)/dx = lim_(h->0) ( f(x+h)-f(x))/h For f(x) = sqrt(x+1) we have: d/dx(sqrt(x+1)) = lim_(h->0)(sqrt(x+h+1)-sqrt(x+1))/h Multiply and divide the function by (sqrt(x+h+1)+sqrt(x+1)): d/dx(sqrt(x+1)) = lim_(h->0)((sqrt(x+h+1)-sqrt(x+1))/h)((sqrt(x+h+1)+sqrt(x+1))/(sqrt(x+h+1)+sqrt(x+1))) and use the identity: (a+b)(a-b) = a^2-b^2 d/dx(sqrt(x+1)) = lim_(h->0)((cancelx+h+cancel1)-(cancelx+cancel1))/(h(sqrt(x+h+1)+sqrt(x+1)) d/dx(sqrt(x+1)) = lim_(h ...