Doc2vec: How to get document vectors
www.py4u.net › discuss › 145864I got AttributeError: 'list' object has no attribute 'words' because the input documents to the Doc2vec() was not in correct LabeledSentence format. I hope this below example will help you understand the format. documents = LabeledSentence(words=[u'some', u'words', u'here'], labels=[u'SENT_1'])
'Word2Vec' object has no attribute 'infer_vector' · Issue #18 ...
github.com › jhlau › doc2vecApr 15, 2018 · (env) $ python train_model.py 2018-04-16 11:22:21,169 : INFO : collecting all words and their counts 2018-04-16 11:22:21,169 : INFO : PROGRESS: at example #0, processed 0 words (0/s), 0 word types, 0 tags 2018-04-16 11:22:21,223 : INFO : collected 11097 word types and 1000 unique tags from a corpus of 1000 examples and 84408 words 2018-04-16 11:22:21,272 : INFO : min_count=1 retains 11097 ...
Why Gensim doc2vec give AttributeError: 'list' object has no ...
stackoverflow.com › questions › 36509957Apr 09, 2016 · As far as I understand from tutorials, it should work. However it gives AttributeError: 'list' object has no attribute 'words'. from gensim.models.doc2vec import LabeledSentence, Doc2Vec document = LabeledSentence(words=['some', 'words', 'here'], tags=['SENT_1']) model = Doc2Vec(document, size = 100, window = 300, min_count = 10, workers=4)