Eulersche Formel – Wikipedia
https://de.wikipedia.org/wiki/Eulersche_FormelFür ergibt sich aus der eulerschen Formel die sogenannte eulersche Identität ,die einen einfachen Zusammenhang zwischen vier der bedeutendsten mathematischen Konstanten herstellt: der eulerschen Zahl , der Kreiszahl , der imaginären Einheit sowie der reellen Einheit . Die folgende umgeformte Variante der Gleichung wird bisweilen – obwohl komplizierter …
Euler's formula - Wikipedia
https://en.wikipedia.org/wiki/Euler's_formulaEuler's formula, named after Leonhard Euler, is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function.Euler's formula states that for any real number x: = + , where e is the base of the natural logarithm, i is the imaginary unit, and cos and sin are the trigonometric functions ...
Euler's identity - Wikipedia
en.wikipedia.org › wiki › Euler&e is Euler's number, the base of natural logarithms, i is the imaginary unit, which by definition satisfies i 2 = −1, and π is pi, the ratio of the circumference of a circle to its diameter. Euler's identity is named after the Swiss mathematician Leonhard Euler.
Euler's identity - Wikipedia
https://en.wikipedia.org/wiki/Euler's_identityFundamentally, Euler's identity asserts that is equal to −1. The expression is a special case of the expression , where z is any complex number. In general, is defined for complex z by extending one of the definitions of the exponential function from real exponents to complex exponents. For example, one common definition is: