Newton's Method: What Could Go Wrong?
ocw.mit.edu › courses › mathematicsIf 2the error E 0 = |x − x 0| is greater than 1 and E 1 ∼ E , the error of your estimate could actually increase as you apply Newton’s method. In the example f(x) = x2 − 5, if we had chosen x 0 = −2 we would have found the solution − √ 5 and not 5. This convergence to an unexpected root is illustrated in Fig. 1 y = x2-3 x 0 x 1 tangent to
Error Analysis and Newton’s Method
users.wpi.edu › ~goulet › MME523xn+1 = xn - f (xn)/f’ (xn) what we would like is instead something showing the ratio between xn+1 and xn. One can use Taylor’s Formula and Newton’s Method to show that if r denotes the real root then the error after n+1 and n iterations compares as. | xn+1 - r | < (M/2m) | xn – r| 2. where:
Error Behaviour of Newton’s Method
https://www.math.ubc.ca/~feldman/m120/newtConv.pdfNewton’s method usually works spectacularly well, provided your initialguess is reasonably close to a solution of f(x) = 0. A good way to select this initial guess is to sketch the graph of y= f(x). In these notes we shall see why “Newton’s method usually works spectacularly well, provided your initial guess is reasonably close to a ...
Error Behaviour of Newton’s Method
www.math.ubc.ca › ~feldman › m120Error Behaviour of Newton’s Method Newton’s method is a procedure for finding approximate solutions to equations of the form f(x) = 0. The procedure is to 1) Make a preliminary guess x 1. 2) Define x 2 = x 1 − f(x1) f′(x1). 3) Iterate. That is, once you have computed x n, define x n+1 = x n − f(x n) f′(x n).