The Method of False Position
web.mit.edu › 10 › WebThe false position method differs from the bisection method only in the choice it makes for subdividing the interval at each iteration. It converges faster to the root because it is an algorithm which uses appropriate weighting of the intial end points x 1 and x 2 using the information about the function, or the data of the problem.
False Position Method - Numerical Methods - ST0241
sites.google.com › false-position-methodFalse Position Method. False Position Method is a numerical method used when we need to find the root of an equation, this combines the bisection and secant methods. If you want to use this method you have to be sure that continuity exists between the intervals where the root is located. This method usually needs two values of x with opposite sign so the method can be sure that a root exist between those two values.