【NLP】使用bert - 水奈樾 - 博客园
https://www.cnblogs.com/rucwxb/p/10367609.htmlfrom bert import modeling # 使用数据加载BertModel,获取对应的字embedding model = modeling.BertModel( config = bert_config, is_training = is_training, input_ids = input_ids, input_mask = input_mask, token_type_ids = segment_ids, use_one_hot_embeddings = use_one_hot_embeddings ) # 获取对应的embedding 输入数据[batch_size, seq_length, …
bert-for-tf2 · PyPI
pypi.org › project › bert-for-tf2Jan 21, 2021 · and once the model has been build or compiled, the original pre-trained weights can be loaded in the BERT layer: import bert bert_ckpt_file = os. path. join (model_dir, "bert_model.ckpt") bert. load_stock_weights (l_bert, bert_ckpt_file) N.B. see tests/test_bert_activations.py for a complete example.
bert-for-tf2 · PyPI
https://pypi.org/project/bert-for-tf221.01.2021 · from bert import bertmodellayer l_bert = bertmodellayer(**bertmodellayer.params( vocab_size = 16000, # embedding params use_token_type = true, use_position_embeddings = true, token_type_vocab_size = 2, num_layers = 12, # transformer encoder params hidden_size = 768, hidden_dropout = 0.1, intermediate_size = 4*768, intermediate_activation = …
transformers/modeling_bert.py at master · huggingface ...
github.com › models › bertDec 27, 2021 · """PyTorch BERT model.""" import math: import os: import warnings: from dataclasses import dataclass: from typing import Optional, Tuple: import torch: import torch. utils. checkpoint: from packaging import version: from torch import nn: from torch. nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss: from... activations import ACT2FN: from ...