imblearn.over_sampling.SMOTE — imbalanced-learn 0.3.0.dev0 ...
glemaitre.github.io › imblearnclass imblearn.over_sampling.SMOTE (ratio='auto', random_state=None, k=None, k_neighbors=5, m=None, m_neighbors=10, out_step=0.5, kind='regular', svm_estimator=None, n_jobs=1) [source] [source] ¶ Class to perform over-sampling using SMOTE. This object is an implementation of SMOTE - Synthetic Minority Over-sampling Technique, and the variants Borderline SMOTE 1, 2 and SVM-SMOTE.
SMOTE — Version 0.8.1
imbalanced-learn.org › stable › referencesclass imblearn.over_sampling. SMOTE (*, sampling_strategy = 'auto', random_state = None, k_neighbors = 5, n_jobs = None) [source] ¶ Class to perform over-sampling using SMOTE. This object is an implementation of SMOTE - Synthetic Minority Over-sampling Technique as presented in . Read more in the User Guide. Parameters sampling_strategy float, str, dict or callable, default=’auto’
2. Over-sampling — Version 0.8.1
imbalanced-learn.org › stable › over_sampling>>> from imblearn.over_sampling import SMOTEN >>> sampler = SMOTEN (random_state = 0) >>> X_res, y_res = sampler. fit_resample (X, y) >>> X_res [y. size:] array([['blue'], ['blue'], ['blue'], ['blue'], ['blue'], ['blue']], dtype=object) >>> y_res [y. size:] array(['not apple', 'not apple', 'not apple', 'not apple', 'not apple', 'not apple'], dtype=object)