keras.engine.input_layer — conx 3.7.9 documentation
conx.readthedocs.io › engine › input_layerSource code for keras.engine.input_layer """Input layer code (`Input` and `InputLayer`). """ from __future__ import print_function from __future__ import absolute_import from __future__ import division from .base_layer import Layer from .base_layer import Node from .. import backend as K from ..legacy import interfaces from ..utils.generic_utils import unpack_singleton class InputLayer ( Layer ): """Layer to be used as an entry point into a model.
Keras layers API
https://keras.io/api/layersKeras layers API. Layers are the basic building blocks of neural networks in Keras. A layer consists of a tensor-in tensor-out computation function (the layer's call method) and some state, held in TensorFlow variables (the layer's weights).. A …
keras.engine.topology · Issue #20 · BIMSBbioinfo/janggu ...
https://github.com/BIMSBbioinfo/janggu/issues/2020.08.2021 · from keras.layers import Embedding from keras.layers import Dense, Input, Flatten from keras.layers import Conv1D, MaxPooling1D, Embedding, concatenate, Dropout, LSTM, GRU, Bidirectional from keras.models import Model,Sequential. from keras import backend as K from keras.engine.topology import Layer, InputSpec from keras.layers import Layer ...
keras.engine.topology · Issue #20 · BIMSBbioinfo/janggu · GitHub
github.com › BIMSBbioinfo › jangguAug 20, 2021 · from keras.layers import Embedding from keras.layers import Dense, Input, Flatten from keras.layers import Conv1D, MaxPooling1D, Embedding, concatenate, Dropout, LSTM, GRU, Bidirectional from keras.models import Model,Sequential. from keras import backend as K from keras.engine.topology import Layer, InputSpec from keras.layers import Layer from keras import initializers, optimizers
Python Examples of keras.engine.Layer
www.programcreek.com › 101982 › kerasdef _layer_Affine(self): self.add_body(0, ''' from keras.engine import Layer, InputSpec from keras import initializers from keras import backend as K class Affine(Layer): def __init__(self, scale, bias=None, **kwargs): super(Affine, self).__init__(**kwargs) self.gamma = scale self.beta = bias def call(self, inputs, training=None): input_shape = K.int_shape(inputs) # Prepare broadcasting shape.
Keras layers API
keras.io › api › layersfrom tensorflow.keras import layers layer = layers.Dense(32, activation='relu') inputs = tf.random.uniform(shape=(10, 20)) outputs = layer(inputs) Unlike a function, though, layers maintain a state, updated when the layer receives data during training, and stored in layer.weights: