Graph Neural Networks – ESE 514
gnn.seas.upenn.eduGraph Neural Networks They have been developed and are presented in this course as generalizations of the convolutional neural networks (CNNs) that are used to process signals in time and space. Depending on how much you have heard of neural networks (NNs) and deep learning, this is a sentence that may sound strange.
A Gentle Introduction to Graph Neural Networks
https://distill.pub/2021/gnn-intro02.09.2021 · A graph is the input, and each component (V,E,U) gets updated by a MLP to produce a new graph. Each function subscript indicates a separate function for a different graph attribute at the n-th layer of a GNN model. As is common with neural networks modules or layers, we can stack these GNN layers together.
Graph neural network - Wikipedia
https://en.wikipedia.org/wiki/Graph_neural_networkA graph neural network (GNN) is a class of neural networks for processing data represented by graph data structures. They were popularized by their use in supervised learning on properties of various molecules.. Since their inception, several variants of the simple message passing neural network (MPNN) framework have been proposed.