Autoencoders - wildart.github.io
https://wildart.github.io/post/autoencoders29.07.2021 · We begin with a deep dense autoencoder in which an encoder $\phi$ and a decoder $\phi$ represented by neural networks: 2 layers for an encoder and 2 layers for a decoder. In total, we got a deep neural network that is composed of the 4 layers which perform following transformation: $$\mathbb{R}^{784} \to \mathbb{R}^{128} \to \mathbb{R}^{8} \to …