Activations - Keras Documentation
man.hubwiz.com › docset › Keraskeras.activations.tanh(x) Hyperbolic tangent activation function. sigmoid keras.activations.sigmoid(x) Sigmoid activation function. hard_sigmoid keras.activations.hard_sigmoid(x) Hard sigmoid activation function. Faster to compute than sigmoid activation. Arguments. x: Input tensor. Returns. Hard sigmoid activation: 0 if x < -2.5; 1 if x > 2.5
Python Examples of keras.activations.sigmoid
www.programcreek.com › kerasThe following are 30 code examples for showing how to use keras.activations.sigmoid().These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
Keras documentation: Layer activation functions
https://keras.io/api/layers/activationstf.keras.activations.relu(x, alpha=0.0, max_value=None, threshold=0) Applies the rectified linear unit activation function. With default values, this returns the standard ReLU activation: max (x, 0), the element-wise maximum of 0 and the input tensor. Modifying default parameters allows you to use non-zero thresholds, change the max value of ...
Keras documentation: Layer activation functions
keras.io › api › layersSigmoid activation function, sigmoid(x) = 1 / (1 + exp(-x)). Applies the sigmoid activation function. For small values (<-5), sigmoid returns a value close to zero, and for large values (>5) the result of the function gets close to 1. Sigmoid is equivalent to a 2-element Softmax, where the second element is assumed to be zero.