2 Heat Equation - Stanford University
web.stanford.edu › class › math220b2 Heat Equation 2.1 Derivation Ref: Strauss, Section 1.3. Below we provide two derivations of the heat equation, ut ¡kuxx = 0 k > 0: (2.1) This equation is also known as the diffusion equation. 2.1.1 Diffusion Consider a liquid in which a dye is being diffused through the liquid. The dye will move from higher concentration to lower ...
Derivation of the Heat Equation - USM
www.math.usm.edu › lambers › mat417Derivation of the Heat Equation We will now derive the heat equation with an external source, u t= 2u xx+ F(x;t); 0 <x<L; t>0; where uis the temperature in a rod of length L, 2 is a di usion coe cient, and F(x;t) represents an external heat source. We begin with the following assumptions: The rod is made of a homogeneous material. The rod is ...