3.2 Higher Order Partial Derivatives
www.ucl.ac.uk › ~ucahmdl › LessonPlans3.2 Higher Order Partial Derivatives If f is a function of several variables, then we can find higher order partials in the following manner. Definition. If f(x,y) is a function of two variables, then ∂f ∂x and ∂f ∂y are also functions of two variables and their partials can be taken. Hence we can
Lecture 9: Partial derivatives
people.math.harvard.edu › handouts › week3Lecture 9: Partial derivatives If f(x,y) is a function of two variables, then ∂ ∂x f(x,y) is defined as the derivative of the function g(x) = f(x,y), where y is considered a constant. It is called partial derivative of f with respect to x. The partial derivative with respect to y is defined similarly. We also use the short hand notation ...