Introduction to the Keras Tuner | TensorFlow Core
www.tensorflow.org › tutorials › kerasNov 11, 2021 · import keras_tuner as kt Download and prepare the dataset In this tutorial, you will use the Keras Tuner to find the best hyperparameters for a machine learning model that classifies images of clothing from the Fashion MNIST dataset. Load the data. (img_train, label_train), (img_test, label_test) = keras.datasets.fashion_mnist.load_data()
how to import keras-tuner code example | Newbedev
newbedev.com › python-how-to-import-keras-tunerfrom tensorflow import keras from tensorflow.keras import layers from kerastuner.tuners import RandomSearch def build_model_function(hp): model = keras.Sequential() model.add(layers.Dense(units=hp.Int('units', min_value=32, max_value=512, step=32), activation='relu')) model.add(layers.Dense(10, activation='softmax')) model.compile(optimizer=keras.optimizers.Adam( hp.Choice('learning_rate',values=[1e-2, 1e-3, 1e-4])), loss='sparse_categorical_crossentropy', metrics=['accuracy']) return model ...
KerasTuner
https://keras.io › keras_tunerKerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain points of hyperparameter search. Easily configure your search ...
Keras documentation: KerasTuner
https://keras.io/keras_tunerimport keras_tuner as kt from tensorflow import keras. Write a function that creates and returns a Keras model. Use the hp argument to define the hyperparameters during model creation. def build_model (hp): model = keras. Sequential model. add (keras. layers. Dense (hp.
Keras documentation: Getting started with KerasTuner
keras.io › guides › keras_tunerMay 31, 2019 · from keras_tuner.applications import HyperResNet hypermodel = HyperResNet (input_shape = (28, 28, 1), classes = 10) tuner = kt. RandomSearch ( hypermodel , objective = "val_accuracy" , max_trials = 2 , overwrite = True , directory = "my_dir" , project_name = "built_in_hypermodel" , ) tuner . search ( x_train [: 100 ], y_train [: 100 ], epochs = 1 , validation_data = ( x_val [: 100 ], y_val [: 100 ]) )
Keras documentation: KerasTuner
keras.io › keras_tunerimport keras_tuner as kt from tensorflow import keras. Write a function that creates and returns a Keras model. Use the hp argument to define the hyperparameters during model creation. def build_model(hp): model = keras.Sequential() model.add(keras.layers.Dense( hp.Choice('units', [8, 16, 32]), activation='relu')) model.add(keras.layers.Dense(1, activation='relu')) model.compile(loss='mse') return model.
Keras Tuner | Hyperparameter Tuning With Keras Tuner For ANN
www.analyticsvidhya.com › blog › 2021Jun 22, 2021 · import kerastuner as kt msle = MeanSquaredLogarithmicError() def build_model(hp): model = tf.keras.Sequential() # Tune the number of units in the first Dense layer # Choose an optimal value between 32-512 hp_units1 = hp.Int('units1', min_value=32, max_value=512, step=32) hp_units2 = hp.Int('units2', min_value=32, max_value=512, step=32) hp_units3 = hp.Int('units3', min_value=32, max_value=512, step=32) model.add(Dense(units=hp_units1, activation='relu')) model.add(tf.keras.layers.Dense(units ...