DIFFERENTIATION TABLE (DERIVATIVES)
pages.mtu.edu › MA2160 › diif-integr-tableINTEGRATION TABLE (INTEGRALS) Notation: f(x) and g(x) are any continuous functions; u = u(x) is differentiable function of x; du = du dx dx = u0 dx; c, n, and a > 0 are constants (1) Z (f(x)+g(x))dx = Z f(x)dx+ Z g(x)dx (2) Z cf(x)dx = c Z f(x)dx (3) Z un du = un+1 n+1 +C, n 6= −1 (a) Z 1 u du = Z du u = ln|u|+C (b) Z 1 √ u du = Z du √ u = 2 √ u+C (c) Z du = u+C (4) Z e udu = e +C (5) Z
nn) (cx ncx nn)
tutorial.math.lamar.edu › pdf › Common_Derivativesintegral, (( )) ( ) ( ) ( ) b gb( ) a ga ∫∫f g x g x dx f u du′ = . Integration by Parts The standard formulas for integration by parts are, bb b aa a ∫∫ ∫ ∫udv uv vdu=−= udv uv vdu− Choose uand then compute and dv du by differentiating u and compute v by using the fact that v dv=∫.
Table of derivatives and integrals
engineering.wayne.edu › me › examsTable 2.1, choose Yp in the same line and determine its undetermined coefficients by substituting Yp and its derivatives into (4). (b) Modification Rule. If a term in your choice for Yp happens to be a solution of the homogeneous ODE corresponding to (4), multiply this term by x (or by x 2 if this solution corresponds to a double root of the
Differentiation Formulas Integration Formulas
www.pas.rochester.edu › ~arijit › c02Integration Formulas Z dx = x+C (1) Z xn dx = xn+1 n+1 +C (2) Z dx x = ln|x|+C (3) Z ex dx = ex +C (4) Z ax dx = 1 lna ax +C (5) Z lnxdx = xlnx−x+C (6) Z sinxdx = −cosx+C (7) Z cosxdx = sinx+C (8) Z tanxdx = −ln|cosx|+C (9) Z cotxdx = ln|sinx|+C (10) Z secxdx = ln|secx+tanx|+C (11) Z cscxdx = −ln |x+cot +C (12) Z sec2 xdx = tanx+C (13) Z csc2 xdx = −cotx+C (14) Z
Table of Integrals - UMD
www.physics.umd.edu › hep › drewTable of Integrals BASIC FORMS (1)!xndx= 1 n+1 xn+1 (2) 1 x!dx=lnx (3)!udv=uv"!vdu (4) "u(x)v!(x)dx=u(x)v(x)#"v(x)u!(x)dx RATIONAL FUNCTIONS (5) 1 ax+b!dx= 1 a ln(ax+b) (6) 1 (x+a)2!dx= "1 x+a (7)!(x+a)ndx=(x+a)n a 1+n + x 1+n " #$ % &', n!"1 (8)!x(x+a)ndx= (x+a)1+n(nx+x"a) (n+2)(n+1) (9) dx!1+x2 =tan"1x (10) dx!a2+x2 = 1 a tan"1(x/a) (11) xdx!a2+x2 = 1 2 ln(a2+x2) (12) x2dx!a2+x2 =x"atan"1(x/a)
Differentiation Formulas Integration Formulas
www.pas.rochester.edu/~arijit/c02.pdfIntegration Formulas Z dx = x+C (1) Z xn dx = xn+1 n+1 +C (2) Z dx x = ln|x|+C (3) Z ex dx = ex +C (4) Z ax dx = 1 lna ax +C (5) Z lnxdx = xlnx−x+C (6) Z sinxdx = −cosx+C (7) Z cosxdx = sinx+C (8) Z tanxdx = −ln|cosx|+C (9) Z cotxdx = ln|sinx|+C (10) Z secxdx = ln|secx+tanx|+C (11) Z cscxdx = −ln |x+cot +C (12) Z sec2 xdx = tanx+C (13 ...
Table of Integrals
integral-table.com › downloads › single-page-integral-tableTable of Integrals∗ Basic Forms Z xndx = 1 n+ 1 xn+1 (1) Z 1 x dx= lnjxj (2) Z udv= uv Z vdu (3) Z 1 ax+ b dx= 1 a lnjax+ bj (4) Integrals of Rational Functions Z 1 (x+ a)2 dx= ln(1 x+ a (5) Z (x+ a)ndx= (x+ a)n+1 n+ 1;n6= 1 (6) Z x(x+ a)ndx= (x+ a)n+1((n+ 1)x a) (n+ 1)(n+ 2) (7) Z 1 1 + x2 dx= tan 1 x (8) Z 1 a2 + x2 dx= 1 a tan 1 x a (9) Z x a 2+ x dx= 1 2 lnja2 + x2j (10) Z x2 a 2+ x dx= x atan 1 x a (11) Z x3 a 2+ x