The Inverse Laplace Transform
howellkb.uah.edu › DEtext › Part4k is a function having an inverse Laplace transform. Let’s now use the linearity to compute a few inverse transforms.! Example 26.3: Let’s find L−1 1 s2 +9 t. We know (or found in table 24.1 on page 484) that L−1 3 s2 +9 t = sin(3t) , which is almost what we want. To use this in computing our desired inverse transform, we
Laplace Transform: Examples - Stanford University
math.stanford.edu/~jmadnick/R3-53.pdfWe call f(t) the inverse Laplace transform of F(s) = Lff(t)g. We write f= L1fFg. Fact (Linearity): The inverse Laplace transform is linear: L 1fc 1F 1(s) + c 2F 2(s)g= c 1 L 1fF 1(s)g+ c 2 L 1fF 2(s)g: Inverse Laplace Transform: Examples Example 1: L 1 ˆ 1 s a ˙ = eat Example 2: L 1 ˆ 1 (s a)n ˙ = eat tn 1 (n 1)! Example 3: L 1 ˆ s s2 + b2 ...
Laplace Transform: Examples
math.stanford.edu › ~jmadnick › R3-53We call f(t) the inverse Laplace transform of F(s) = Lff(t)g. We write f= L1fFg. Fact (Linearity): The inverse Laplace transform is linear: L 1fc 1F 1(s) + c 2F 2(s)g= c 1 L 1fF 1(s)g+ c 2 L 1fF 2(s)g: Inverse Laplace Transform: Examples Example 1: L 1 ˆ 1 s a ˙ = eat Example 2: L 1 ˆ 1 (s a)n ˙ = eat tn 1 (n 1)! Example 3: L 1 ˆ s s2 + b2 ˙ = cosbt Example 4: L 1 ˆ 1 s2 + b2 ˙ = 1 b sinbt