Kernel (algebra) - Wikipedia
en.wikipedia.org › wiki › Kernel_(algebra)The kernel is usually denoted as ker T, or some variation thereof: Since a linear map preserves zero vectors, the zero vector 0V of V must belong to the kernel. The transformation T is injective if and only if its kernel is reduced to the zero subspace. The kernel ker T is always a linear subspace of V.
Kernel (algebra) - Wikipedia
https://en.wikipedia.org/wiki/Kernel_(algebra)Let V and W be vector spaces over a field (or more generally, modules over a ring) and let T be a linear map from V to W. If 0W is the zero vector of W, then the kernel of T is the preimage of the zero subspace {0W}; that is, the subset of V consisting of all those elements of V that are mapped by T to the element 0W. The kernel is usually denoted as ker T, or some variation thereof: Since a linear map preserves zero vectors, the zero vector 0V of V must belong to the kernel. Th…
KERT
kert.proKERT is named for those seeking to enjoy the simple pleasures of life. Creating secure, inventive, and practical backpacks for creators, entrepreneurs, travelers, commuters, or anyone boldly chasing after their dreams is the core culture of KERT.
Kernel (álgebra) - Wikipedia, la enciclopedia libre
https://es.wikipedia.org/wiki/Kernel_(álgebra)Sean V y W espacios vectoriales sobre un campo (o más generalmente, módulos sobre un anillo) y sea T una aplicación lineal de V sobre W. Si 0W es el vector cero de W, entonces el núcleo de T es la preimagen del subespacio cero {0W}; es decir, el subconjunto de V que consta de todos los elementos de V que T asigna al elemento 0W. El núcleo generalmente se denota como ker T, o con alguna variación del mismo: