LSTM layer - Keras
https://keras.io/api/layers/recurrent_layers/lstmLSTM class. Long Short-Term Memory layer - Hochreiter 1997. See the Keras RNN API guide for details about the usage of RNN API. Based on available runtime hardware and constraints, this layer will choose different implementations (cuDNN-based or pure-TensorFlow) to maximize the performance. If a GPU is available and all the arguments to the ...
Keras documentation: Layer activation functions
https://keras.io/api/layers/activationstf.keras.activations.relu(x, alpha=0.0, max_value=None, threshold=0) Applies the rectified linear unit activation function. With default values, this returns the standard ReLU activation: max (x, 0), the element-wise maximum of 0 and the input tensor. Modifying default parameters allows you to use non-zero thresholds, change the max value of ...
Activation layer - Keras
keras.io › api › layersactivation: Activation function, such as tf.nn.relu, or string name of built-in activation function, such as "relu". Usage: >>> layer = tf.keras.layers.Activation('relu') >>> output = layer( [-3.0, -1.0, 0.0, 2.0]) >>> list(output.numpy()) [0.0, 0.0, 0.0, 2.0] >>> layer = tf.keras.layers.Activation(tf.nn.relu) >>> output = layer( [-3.0, -1.0, 0.0, 2.0]) >>> list(output.numpy()) [0.0, 0.0, 0.0, 2.0]
Losses - Keras
https://keras.io/api/lossesLoss functions are typically created by instantiating a loss class (e.g. keras.losses.SparseCategoricalCrossentropy).All losses are also provided as function handles (e.g. keras.losses.sparse_categorical_crossentropy). Using classes enables you to pass configuration arguments at instantiation time, e.g.:
Keras documentation: Layer activation functions
keras.io › api › layerssoftmax function. tf.keras.activations.softmax(x, axis=-1) Softmax converts a vector of values to a probability distribution. The elements of the output vector are in range (0, 1) and sum to 1. Each vector is handled independently. The axis argument sets which axis of the input the function is applied along.
Optimizers - Keras
https://keras.io/api/optimizersThis function returns the weight values associated with this optimizer as a list of Numpy arrays. The first value is always the iterations count of the optimizer, followed by the optimizer's state variables in the order they were created. The returned list can in turn be used to load state into similarly parameterized optimizers.