Attention layer - Keras
keras.io › api › layersAttention class. tf.keras.layers.Attention(use_scale=False, **kwargs) Dot-product attention layer, a.k.a. Luong-style attention. Inputs are query tensor of shape [batch_size, Tq, dim], value tensor of shape [batch_size, Tv, dim] and key tensor of shape [batch_size, Tv, dim]. The calculation follows the steps:
Code examples - Keras
keras.io › examplesCode examples. Our code examples are short (less than 300 lines of code), focused demonstrations of vertical deep learning workflows. All of our examples are written as Jupyter notebooks and can be run in one click in Google Colab, a hosted notebook environment that requires no setup and runs in the cloud.
Attention layer - Keras
https://keras.io/api/layers/attention_layers/attentionDot-product attention layer, a.k.a. Luong-style attention. Inputs are query tensor of shape [batch_size, Tq, dim], value tensor of shape [batch_size, Tv, dim] and key tensor of shape [batch_size, Tv, dim].The calculation follows the steps: Calculate scores with shape [batch_size, Tq, Tv] as a query-key dot product: scores = tf.matmul(query, key, transpose_b=True).
tf.keras.layers.Attention | TensorFlow Core v2.7.0
www.tensorflow.org › tf › kerasThe calculation follows the steps: Calculate scores with shape [batch_size, Tq, Tv] as a query - key dot product: scores = tf.matmul (query, key, transpose_b=True). Use scores to calculate a distribution with shape [batch_size, Tq, Tv]: distribution = tf.nn.softmax (scores). Use distribution to create a linear combination of value with shape ...