Probabilistic losses - Keras
https://keras.io/api/losses/probabilistic_lossesComputes the cross-entropy loss between true labels and predicted labels. Use this cross-entropy loss for binary (0 or 1) classification applications. The loss function requires the following inputs: y_true (true label): This is either 0 or 1. y_pred (predicted value): This is the model's prediction, i.e, a single floating-point value which ...
Losses - Keras
keras.io › api › lossesLoss functions are typically created by instantiating a loss class (e.g. keras.losses.SparseCategoricalCrossentropy ). All losses are also provided as function handles (e.g. keras.losses.sparse_categorical_crossentropy ). Using classes enables you to pass configuration arguments at instantiation time, e.g.:
Losses - Keras
https://keras.io/api/lossesLoss functions are typically created by instantiating a loss class (e.g. keras.losses.SparseCategoricalCrossentropy).All losses are also provided as function handles (e.g. keras.losses.sparse_categorical_crossentropy). Using classes enables you to pass configuration arguments at instantiation time, e.g.: