Keras documentation: Layer activation functions
keras.io › api › layersSigmoid activation function, sigmoid(x) = 1 / (1 + exp(-x)). Applies the sigmoid activation function. For small values (<-5), sigmoid returns a value close to zero, and for large values (>5) the result of the function gets close to 1. Sigmoid is equivalent to a 2-element Softmax, where the second element is assumed to be zero.
Activations - Keras Documentation
man.hubwiz.com › docset › Keraskeras.activations.tanh(x) Hyperbolic tangent activation function. sigmoid keras.activations.sigmoid(x) Sigmoid activation function. hard_sigmoid keras.activations.hard_sigmoid(x) Hard sigmoid activation function. Faster to compute than sigmoid activation. Arguments. x: Input tensor. Returns. Hard sigmoid activation: 0 if x < -2.5; 1 if x > 2.5
Keras documentation: Layer activation functions
https://keras.io/api/layers/activationstf.keras.activations.relu(x, alpha=0.0, max_value=None, threshold=0) Applies the rectified linear unit activation function. With default values, this returns the standard ReLU activation: max (x, 0), the element-wise maximum of 0 and the input tensor. Modifying default parameters allows you to use non-zero thresholds, change the max value of ...