Building Autoencoders in Keras
blog.keras.io › building-autoencoders-in-kerasMay 14, 2016 · a simple autoencoder based on a fully-connected layer; a sparse autoencoder; a deep fully-connected autoencoder; a deep convolutional autoencoder; an image denoising model; a sequence-to-sequence autoencoder; a variational autoencoder; Note: all code examples have been updated to the Keras 2.0 API on March 14, 2017.
Sparse Autoencoder in Keras | allenlu2007
allenlu2007.wordpress.com › 2017/07/24 › sparseJul 24, 2017 · The difference between the two is mostly due to the regularization term being added to the loss during training (worth about 0.01). Here’s a visualization of our new results: They look pretty similar to the previous model, the only significant difference being the sparsity of the encoded representations. encoded_imgs.mean () yields a value 3 ...
sparse-autoencoder · GitHub Topics · GitHub
https://github.com/topics/sparse-autoencoder09.12.2018 · This repository contains Python codes for Autoenncoder, Sparse-autoencoder, HMM, Expectation-Maximization, Sum-product Algorithm, ANN, Disparity map, PCA. machine-learning machine-learning-algorithms pca expectation-maximization ann disparity-map sum-product sparse-autoencoder autoenncoder sum-product-algorithm. Updated on Sep 26, 2020.
k-sparse autoencoder · GitHub
gist.github.com › harryscholes › ed3539ab21ad34dc24bJun 29, 2018 · k-sparse autoencoder. '''Keras implementation of the k-sparse autoencoder. '''k-sparse Keras layer. sparsity_levels: np.ndarray, sparsity levels per epoch calculated by `calculate_sparsity_levels`. '''Update sparsity level at the beginning of each epoch. '''Calculate sparsity levels per epoch. '''Example of how to use the k-sparse autoencoder ...
Sparse Autoencoders | TheAILearner
https://theailearner.com/2019/01/01/sparse-autoencoders01.01.2019 · In this blog we will learn one of its variant, sparse autoencoders. In every autoencoder, we try to learn compressed representation of the input. Let’s take an example of a simple autoencoder having input vector dimension of 1000, compressed into 500 hidden units and reconstructed back into 1000 outputs. The hidden units will learn correlated ...