Chapter 3 - Interpolation
www.cs.usask.ca › ~spiteri › M211Newton Interpolation We have seen two extreme cases of representations of polynomial interpolants: 1.The Lagrange form, which allows you to write out P n(x) directly but is very complicated. 2.The power form, which is easy to use but requires the solution of a typically ill-conditioned Vandermonde linear system.
Lagrange & Newton interpolation
flurry.dg.fmph.uniba.sk › LagrangeNewtonLagrange & Newton interpolation In this section, we shall study the polynomial interpolation in the form of Lagrange and Newton. Given a se-quence of (n +1) data points and a function f, the aim is to determine an n-th degree polynomial which interpol-ates f at these points. We shall resort to the notion of divided differences. Interpolation
LECTURE 3 LAGRANGE INTERPOLATION
coast.nd.edu › jjwteach › www• Lagrange interpolating functions • Newton forward or backward interpolation The resulting polynomial will always be the same! x o fx o f o x 1 fx 1 f 1 x 2 fx 2 f 2 x N fx N f N Nth N + 1 gx a o a 1xa 2x 2 a 3x 3 a Nx = +++++N a i i = 0 N N + 1 Nth