LAGRANGE INTERPOLATION Introduction n
people.csail.mit.edu › Lagrange_InterpolationLAGRANGE INTERPOLATION DARYL DEFORD 1. Introduction Polynomial interpolation is a method for solving the following problem: Given a set of n of data points with distinct x{coordinates f(x i;y i)gn i=1 nd a poly-nomial of degree at most n 1 that passes through each point. Example graphs of these polynomials for di erent data sets are shown below ...
LECTURE 3 LAGRANGE INTERPOLATION
coast.nd.edu › jjwteach › wwwLagrange Cubic Interpolation Using Basis Functions • For Cubic Lagrange interpolation, N=3 Example • Consider the following table of functional values (generated with ) • Find as: 0 0.40 -0.916291 1 0.50 -0.693147 2 0.70 -0.356675 3 0.80 -0.223144 fx = lnx i x i f i g 0.60 gx f o xx– 1 xx– 2 xx– 3 x o – x 1 x o – x