8 Some Additional Examples Laplace Transform
www.math.colostate.edu › ~pauld › M545Definition Let f t be defined for t 0 and let the Laplace transform of f t be defined by, L f t 0 e stf t dt f s For example: f t 1, t 0, L 1 0 e st dt e st s |t 0 t 1 s f s for s 0 f t ebt, t 0, L ebt 0 e b s t dt e b s t s b |t 0 t 1 s b f s, for s b. The Laplace transform is defined for all functions of exponential type. That is, any function f t which is
Laplace Transform: Examples - Stanford University
math.stanford.edu › ~jmadnick › R3-53Fact (Linearity): The Laplace transform is linear: Lfc 1f 1(t) + c 2f 2(t)g= c 1 Lff 1(t)g+ c 2 Lff 2(t)g: Example 1: Lf1g= 1 s Example 2: Lfeatg= 1 s a Example 3: Lfsin(at)g= a s2 + a2 Example 4: Lfcos(at)g= s s2 + a2 Example 5: Lftng= n! sn+1 Useful Fact: Euler’s Formula says that eit= cost+ isint e it= cost isint Therefore, cost= 1 2 (eit+ e it); sint= 1 2i (eit e it):