Logical Equivalences - Wichita
www.math.wichita.edu › ~hammond › math321p →q≡¬p∨q p → q ≡ ¬ p ∨ q. 🔗. Example 2.1.9. Use existing logical equivalences from Table 2.1.8 to show the following are equivalent. p∧q ≡ ¬(p → ¬q) p ∧ q ≡ ¬ ( p → ¬ q) (p → r)∨(q → r)≡ (p∧q)→ r ( p → r) ∨ ( q → r) ≡ ( p ∧ q) → r. q → p≡ ¬p→ ¬q q → p ≡ ¬ p → ¬ q. (¬p → (q∧¬q))≡ p ( ¬ p → ( q ∧ ¬ q)) ≡ p. 🔗.