Du lette etter:

max margin loss pytorch

TripletMarginLoss — PyTorch 1.10.1 documentation
https://pytorch.org › generated › to...
TripletMarginLoss (margin=1.0, p=2.0, eps=1e-06, swap=False, ... Creates a criterion that measures the triplet loss given an input tensors x 1 x1 x1, ...
HingeEmbeddingLoss — PyTorch 1.10.1 documentation
https://pytorch.org › generated › to...
HingeEmbeddingLoss. class torch.nn. HingeEmbeddingLoss (margin=1.0, size_average=None, reduce=None, reduction='mean')[source]. Measures the loss given an ...
How to use the max margin loss? - PyTorch Forums
https://discuss.pytorch.org › how-t...
How to use the [max margin loss]:frowning:https://pytorch.org/docs/stable/nn.html#torch.nn.MarginRankingLoss): The inputs are expected to be ...
MultiMarginLoss — PyTorch 1.10.1 documentation
pytorch.org › torch
MultiMarginLoss (p = 1, margin = 1.0, weight = None, size_average = None, reduce = None, reduction = 'mean') [source] ¶ Creates a criterion that optimizes a multi-class classification hinge loss (margin-based loss) between input x x x (a 2D mini-batch Tensor ) and output y y y (which is a 1D tensor of target class indices, 0 ≤ y ≤ x.size ...
MultiMarginLoss — PyTorch 1.10.1 documentation
https://pytorch.org › generated › to...
MultiMarginLoss. class torch.nn. MultiMarginLoss (p=1, margin=1.0, weight=None, size_average=None, ... loss(x,y)=x.size(0)∑i​max(0,margin−x[y]+x[i])p​.
TripletMarginLoss — PyTorch 1.10.1 documentation
pytorch.org › torch
TripletMarginLoss (margin = 1.0, p = 2.0, eps = 1e-06, swap = False, size_average = None, reduce = None, reduction = 'mean') [source] ¶ Creates a criterion that measures the triplet loss given an input tensors x 1 x1 x 1, x 2 x2 x 2, x 3 x3 x 3 and a margin with a value greater than 0 0 0. This is used for measuring a relative similarity ...
MultiMarginLoss — PyTorch 1.10.1 documentation
https://pytorch.org/docs/stable/generated/torch.nn.MultiMarginLoss.html
MultiMarginLoss. class torch.nn.MultiMarginLoss(p=1, margin=1.0, weight=None, size_average=None, reduce=None, reduction='mean') [source] Creates a criterion that optimizes a multi-class classification hinge loss (margin-based loss) between input. x.
MarginRankingLoss — PyTorch 1.10.1 documentation
pytorch.org › torch
MarginRankingLoss (margin = 0.0, size_average = None, reduce = None, reduction = 'mean') [source] ¶ Creates a criterion that measures the loss given inputs x 1 x1 x 1 , x 2 x2 x 2 , two 1D mini-batch Tensors , and a label 1D mini-batch tensor y y y (containing 1 or -1).
MarginRankingLoss — PyTorch 1.10.1 documentation
https://pytorch.org › generated › to...
MarginRankingLoss (margin=0.0, size_average=None, reduce=None, reduction='mean')[source] ... The loss function for each pair of samples in the mini-batch is:.
TripletMarginWithDistanceLoss — PyTorch 1.10.1 ...
https://pytorch.org › generated › to...
margin (float, optional) – A nonnegative margin representing the minimum difference between the positive and negative distances required for the loss to be 0.
MarginRankingLoss — PyTorch 1.10.1 documentation
https://pytorch.org/docs/stable/generated/torch.nn.MarginRankingLoss.html
Parameters. margin (float, optional) – Has a default value of 0 0 0.. size_average (bool, optional) – Deprecated (see reduction).By default, the losses are averaged over each loss element in the batch. Note that for some losses, there are multiple elements per sample.
Max margin loss PyTorch - Stack Overflow
https://stackoverflow.com › max-m...
Max margin loss PyTorch ... I'm new in PyTorch and I'm trying to implement a word2vec model that use negative sampling so I got positive scores ...
TripletMarginLoss — PyTorch 1.10.1 documentation
https://pytorch.org/docs/stable/generated/torch.nn.TripletMarginLoss.html
See also TripletMarginWithDistanceLoss, which computes the triplet margin loss for input tensors using a custom distance function.. Parameters. margin (float, optional) – Default: 1 1 1.. p (int, optional) – The norm degree for pairwise distance.Default: 2 2 2. swap (bool, optional) – The distance swap is described in detail in the paper Learning shallow convolutional feature …
Losses - PyTorch Metric Learning
https://kevinmusgrave.github.io › l...
LargeMarginSoftmaxLoss(...).to(torch.device('cuda')) loss_optimizer = torch.optim.SGD(loss_func.parameters(), lr=0.01) # then during training: ...
PyTorch Loss Functions: The Ultimate Guide - neptune.ai
https://neptune.ai › blog › pytorch-...
Softmax refers to an activation function that calculates the normalized exponential ... The Pytorch Margin Ranking Loss is expressed as:.
MultiLabelMarginLoss — PyTorch 1.10.1 documentation
https://pytorch.org/docs/stable/generated/torch.nn.MultiLabelMarginLoss.html
Creates a criterion that optimizes a multi-class multi-classification hinge loss (margin-based loss) between input. x. x x (a 2D mini-batch Tensor ) and output. y. y y (which is a 2D Tensor of target class indices). For each sample in the mini-batch:
MultiLabelMarginLoss — PyTorch 1.10.1 documentation
pytorch.org › torch
Creates a criterion that optimizes a multi-class multi-classification hinge loss (margin-based loss) between input. x. x x (a 2D mini-batch Tensor ) and output. y. y y (which is a 2D Tensor of target class indices). For each sample in the mini-batch:
MultiLabelMarginLoss — PyTorch 1.10.1 documentation
https://pytorch.org › generated › to...
MultiLabelMarginLoss (size_average=None, reduce=None, ... criterion that optimizes a multi-class multi-classification hinge loss (margin-based loss) between ...
GitHub - amirhfarzaneh/lsoftmax-pytorch: The Pytorch ...
github.com › amirhfarzaneh › lsoftmax-pytorch
The Pytorch Implementation of L-Softmax. this repository contains a new, clean and enhanced pytorch implementation of L-Softmax proposed in the following paper: Large-Margin Softmax Loss for Convolutional Neural Networks By Weiyang Liu, Yandong Wen, Zhiding Yu, Meng Yang [ pdf in arxiv] [ original CAFFE code by authors] L-Softmax proposes a ...
torch.nn.modules.loss — PyTorch 1.10.1 documentation
pytorch.org › _modules › torch
The loss function then becomes:.. math:: \text{loss}(x, y) = \frac{\sum_i \max(0, w[y] * (\text{margin} - x[y] + x[i]))^p}{\text{x.size}(0)} Args: p (int, optional): Has a default value of :math:`1`. :math:`1` and :math:`2` are the only supported values. margin (float, optional): Has a default value of :math:`1`. weight (Tensor, optional): a ...
TripletMarginWithDistanceLoss — PyTorch 1.10.1 documentation
https://pytorch.org/.../torch.nn.TripletMarginWithDistanceLoss.html
TripletMarginWithDistanceLoss¶ class torch.nn. TripletMarginWithDistanceLoss (*, distance_function = None, margin = 1.0, swap = False, reduction = 'mean') [source] ¶. Creates a criterion that measures the triplet loss given input tensors a a a, p p p, and n n n (representing anchor, positive, and negative examples, respectively), and a nonnegative, real-valued function …