MIT OpenCourseWare is a free & open publication of material from thousands of MIT courses, covering the entire MIT curriculum. No enrollment or registration. Freely browse and use OCW materials at your own pace. There's no signup, and no start or end dates. Knowledge is your reward. Use OCW to guide your own life-long learning, or to teach others.
MIT OpenCourseWare is a free & open publication of material from thousands of MIT courses, covering the entire MIT curriculum. No enrollment or registration. Freely browse and use OCW materials at your own pace. There's no signup, and no start or end dates. Knowledge is your reward. Use OCW to guide your own life-long learning, or to teach others.
The laws of nature are expressed as differential equations. Scientists and engineers must know how to model the world in terms of differential equations, and how to solve those equations and interpret the solutions. This course focuses on the equations and techniques most useful in science and engineering.
Differential Equations are the language in which the laws of nature are expressed. Understanding properties of solutions of differential equations is fundamental to much of contemporary science and engineering. Ordinary differential equations (ODE's) deal with functions of one variable, which can often be thought of as time.
Differential Equations; Linear Algebra; MIT Crosslinks. Explore the topics covered in this course with MIT Crosslinks, a website that highlights connections among select MIT undergraduate STEM courses and recommends specific study materials from OCW and others. Learn more.
Differential Equations are the language in which the laws of nature are expressed. Understanding properties of solutions of differential equations is fundamental to much of contemporary science and engineering. Ordinary differential equations (ODE's) deal with functions of one variable, which can often be thought of as time.
Integral curves and isoclines. Modeled on the MIT mathlet Isoclines. In Unit I, we will study ordinary differential equations (ODE's) involving only the first derivative. y' = F (x, y) The first session covers some of the conventions and prerequisites for the course. After that we will focus on first order differential equations.