Python Examples of keras.datasets.fashion_mnist.load_data
www.programcreek.com › python › exampledef load_mnist(): # the data, shuffled and split between train and test sets from keras.datasets import mnist, fashion_mnist (x_train, y_train), (x_test, y_test) = fashion_mnist.load_data() x_train = x_train.reshape(-1, 28, 28, 1).astype('float32') / 255. x_test = x_test.reshape(-1, 28, 28, 1).astype('float32') / 255.
Python Examples of keras.datasets.mnist.load_data
www.programcreek.com › python › exampledef get_mnist_data(binarize=False): """Puts the MNIST data in the right format.""" (X_train, y_train), (X_test, y_test) = mnist.load_data() if binarize: X_test = np.where(X_test >= 10, 1, -1) X_train = np.where(X_train >= 10, 1, -1) else: X_train = (X_train.astype(np.float32) - 127.5) / 127.5 X_test = (X_test.astype(np.float32) - 127.5) / 127.5 X_train = np.expand_dims(X_train, axis=-1) X_test = np.expand_dims(X_test, axis=-1) y_train = np.expand_dims(y_train, axis=-1) y_test = np.expand ...
MNIST digits classification dataset - Keras
https://keras.io/api/datasets/mnistload_data function tf.keras.datasets.mnist.load_data(path="mnist.npz") Loads the MNIST dataset. This is a dataset of 60,000 28x28 grayscale images of the 10 digits, along with a test set of 10,000 images. More info can be found at the MNIST homepage. Arguments path: path where to cache the dataset locally (relative to ~/.keras/datasets ). Returns
How to select a desired training sample from mnist.load_data()
stackoverflow.com › questions › 61551358# load data (X_train, y_train), (X_test, y_test) = mnist.load_data() X_train = X_train / 255 X_test = X_test / 255 X_train = X_train.reshape(-1,1,28,28) X_train = X_train[:1000,:,:] X_test = X_test[:500,:,:] y_train = y_train[:1000] y_test = y_test[:500] X_test = np.array(X_test) X_test = X_test.reshape(-1,1,28,28) print('X_train shape: ',X_train.shape) print('X_test shape: ',np.shape(X_test )) print('y_train shape: ',y_train.shape) print('y_test shape: ',np.shape(y_test ))