INTRODUCTION TO NUMERICAL ANALYSIS
ocw.snu.ac.kr › sites › default10.3 Modified Euler’s Method Example 10‐3: Solving a first‐order ODE using the modified Euler method. function [x, y] = odeModEuler(ODE,a,b,h,yINI) x(1) = a; y(1) = yINI; N = (b-a)/h; for i = 1:N x(i+1) = x(i) + h; SlopeEu = ODE(x(i),y(i)); yEu = y(i) + SlopeEu*h; SlopeEnd = ODE(x(i+1),yEu); y(i+1) = y(i) + (SlopeEu+SlopeEnd)*h/2; end
Euler method - Wikipedia
https://en.wikipedia.org/wiki/Euler_methodIn mathematics and computational science, the Euler method (also called forward Euler method) is a first-order numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. It is the most basic explicit method for numerical integration of ordinary differential equations and is the simplest Runge–Kutta method. The Euler method is named after Leonhard Euler, …
Modified Euler Method | MyCareerwise
mycareerwise.com › modified-euler-methodStep 1: [taking the input] Read x[0], y[0] [the initial values of x and y] Read h [the step difference] Read x[n] [the final value of x] Step 2: [defining the function f(x, y)] Return xy + y Step 3: [Modified Euler’s Method] Set r[0] ← y[0] Set i ← 1 While x[i - 1] < xn repeat Set w ← 100.0 Set x[i] ← x[i - 1]+h Set e[i] ← f(x[i - 1],y[i - 1]) Set c ← 0 While w > 0.0001 repeat Set e1 ← f(x[i], r[c]) Set e2 ← (e[i] + e1)/2 Set r[c + 1] ← y[i - 1]+e2×h Set w ← r[c] - r ...