Optimizers - Keras
keras.io › api › optimizersAn optimizer is one of the two arguments required for compiling a Keras model: You can either instantiate an optimizer before passing it to model.compile () , as in the above example, or you can pass it by its string identifier. In the latter case, the default parameters for the optimizer will be used.
tf.keras.optimizers.Adam | TensorFlow Core v2.7.0
www.tensorflow.org › tf › kerasAdam optimization is a stochastic gradient descent method that is based on adaptive estimation of first-order and second-order moments. According to Kingma et al., 2014 , the method is " computationally efficient, has little memory requirement, invariant to diagonal rescaling of gradients, and is well suited for problems that are large in terms of data/parameters ".
Python Examples of keras.optimizers.Adam
www.programcreek.com › kerasThe following are 30 code examples for showing how to use keras.optimizers.Adam().These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.