Newton's method - Wikipedia
en.wikipedia.org › wiki › Newton&In numerical analysis, Newton's method, also known as the Newton–Raphson method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real -valued function.
Newtonverfahren – Wikipedia
https://de.wikipedia.org/wiki/NewtonverfahrenDas größte Problem bei der Anwendung des Newtonverfahrens liegt darin, dass man die erste Ableitung der Funktion benötigt. Deren Berechnung ist meist aufwendig, und in vielen Anwendungen ist eine Funktion auch nicht analytisch gegeben, sondern beispielsweise nur durch ein Computerprogramm (siehe auch Automatisches Differenzieren). Im Eindimensionalen ist dann die Regula falsivorzuziehen, bei der die Sekante und nicht die Tangente benutzt wird. Im Mehrdi…
Calculus I - Newton's Method
tutorial.math.lamar.edu › Classes › CalcIMay 26, 2020 · Newton’s Method If xn x n is an approximation a solution of f (x) =0 f ( x) = 0 and if f ′(xn) ≠ 0 f ′ ( x n) ≠ 0 the next approximation is given by, xn+1 = xn − f (xn) f ′(xn) x n + 1 = x n − f ( x n) f ′ ( x n) This should lead to the question of when do we stop? How many times do we go through this process?