Online calculator: The Newton Polynomial Interpolation
https://planetcalc.com/9023First, enter the data points, one point per line, in the form x f (x), separated by spaces. If you want to interpolate the function using interpolating polynomial, enter the interpolation points into the following field, as x values, separated by spaces. You can also find some theory about the Newton interpolating polynomial below the calculator.
Newton polynomial - Wikipedia
https://en.wikipedia.org/wiki/Newton_polynomialFor any given finite set of data points, there is only one polynomial of least possible degree that passes through all of them. Thus, it is appropriate to speak of the "Newton form", or Lagrange form, etc., of the interpolation polynomial. However, the way the polynomial is obtained matters. There are several similar methods, such as those of Gauss, Bessel and Stirling. They can be derived from Newton's by renaming the x-values of the data points, but in practice they are important.
Newton Interpolation polynomial:
www.nptel.ac.in › content › storage2Newton Interpolation polynomial: Suppose that we are given a data set . Let us assume that these are interpolating points of Newton form of interpolating polynomial of degree i.e. (1) The Newton form of the interpolating polynomial is given by. (2) For i=0, from (1) & (2) we get. (3.1) For , from (1) & (2) we get.
The Newton Polynomial Interpolation
fourier.eng.hmc.edu › e176 › lecturesfunction [v N]=NI(u,x,y) % Newton's Interpolation % vectors x and y contain n+1 points and the corresponding function values % vector u contains all discrete samples of the continuous argument of f(x) n=length(x); % number of interpolating points k=length(u); % number of discrete sample points v=zeros(1,k); % Newton interpolation N=ones(n,k); % all n Newton's polynomials (each of m elements) N(1,:)=y(1); % first Newton's polynomial v=v+N(1,:); for i=2:n % generate remaining Newton's ...