Newton's method - Wikipedia
https://en.wikipedia.org/wiki/Newton's_methodIn numerical analysis, Newton's method, also known as the Newton–Raphson method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function.The most basic version starts with a single-variable function f defined for a real variable x, the function's derivative f ′, …
Newton-Raphson Technique - MIT
web.mit.edu › 10 › WebNewton-Raphson Technique The Newton-Raphson method is one of the most widely used methods for root finding. It can be easily generalized to the problem of finding solutions of a system of non-linear equations, which is referred to as Newton's technique.
The Newton-Raphson Method
www.math.ubc.ca › ~anstee › math104The Newton-Raphson Method 1 Introduction The Newton-Raphson method, or Newton Method, is a powerful technique for solving equations numerically. Like so much of the di erential calculus, it is based on the simple idea of linear approximation. The Newton Method, properly used, usually homes in on a root with devastating e ciency.
Local linearity (video) | Khan Academy
www.khanacademy.org › math › ap-calculus-abThe principle root of 4 is positive 2. So, okay, this is going to be a little bit more than two. Well, let's say that we wanna get a little bit more accurate, and so what I'm going to show you in this video is a method for doing that, for approximating the value of a function near, near a value where we already know the value.