关于pytorch的CrossEntropyLoss的weight参数_林中化人的博客-CSDN博客...
blog.csdn.net › qq_27095227 › articleDec 31, 2019 · import torch import torch.nn as nn inputs = torch.FloatTensor([0,1,0,0,0,1]) outputs = torch.LongTensor([0,1]) inputs = inputs.view((1,3,2)) outputs = outputs.view((1,2)) weight_CE = torch.FloatTensor([1,2,3]) ce = nn.CrossEntropyLoss(ignore_index=255,weight=weight_CE) loss = ce(inputs,outputs) print(loss) 1. 2. 3. 4.
Passing the weights to CrossEntropyLoss correctly - PyTorch ...
discuss.pytorch.org › t › passing-the-weights-toMar 10, 2018 · I create the loss function in the init and pass the weights to the loss: weights = [0.5, 1.0, 1.0, 1.0, 0.3, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] class_weights = torch.FloatTensor(weights).cuda() self.criterion = nn.CrossEntropyLoss(weight=class_weights) Then in the update step, I pass the labels of my current batch to the...
What is the weight values mean in torch.nn.CrossEntropyLoss ...
discuss.pytorch.org › t › what-is-the-weight-valuesDec 22, 2017 · the weight value for each class is 0:(37919/2741), 1:(37919/37919), 2:(37919/22858), 3:(37919/31235), 4:(37919/5499), so: weights = [13.83, 1.0, 1.66, 1.21, 6.9]class_weights = torch.FloatTensor(weights).to(device)criterion = nn.CrossEntropyLoss(weight=class_weights)
Passing the weights to CrossEntropyLoss correctly ...
https://discuss.pytorch.org/t/passing-the-weights-to-crossentropyloss...10.03.2018 · I create the loss function in the init and pass the weights to the loss: weights = [0.5, 1.0, 1.0, 1.0, 0.3, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] class_weights = torch.FloatTensor(weights).cuda() self.criterion = nn.CrossEntropyLoss(weight=class_weights) Then in the update step, I pass the labels of my current batch to the...
详解并自实现pytorch CrossEntropyLoss - 知乎
https://zhuanlan.zhihu.com/p/145341251torch.nn.CrossEntropyLoss (weight=None, size_average=None, ignore_index=-100, reduce=None, reduction='mean') 该函数将 nn.LogSoftmax () 和 nn.NLLLoss () 组合在一个类中. 无 weight : 带 weight: numpy 实现上式无 weight 多维loss, 默认 reduction = 'mean', 取平均. def myCrossEntropyLoss(x, label): loss = [] for i, cls in ...
CrossEntropyLoss — PyTorch 1.10.1 documentation
pytorch.org › torchclass torch.nn.CrossEntropyLoss(weight=None, size_average=None, ignore_index=- 100, reduce=None, reduction='mean', label_smoothing=0.0) [source] This criterion computes the cross entropy loss between input and target. It is useful when training a classification problem with C classes. If provided, the optional argument weight should be a 1D Tensor assigning weight to each of the classes.