Embedding — PyTorch 1.10.1 documentation
pytorch.org › generated › torchEmbedding — PyTorch 1.10.0 documentation Embedding class torch.nn.Embedding(num_embeddings, embedding_dim, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False, _weight=None, device=None, dtype=None) [source] A simple lookup table that stores embeddings of a fixed dictionary and size.
torch.nn.functional.embedding — PyTorch 1.10.1 documentation
pytorch.org › torchtorch.nn.functional.embedding. A simple lookup table that looks up embeddings in a fixed dictionary and size. This module is often used to retrieve word embeddings using indices. The input to the module is a list of indices, and the embedding matrix, and the output is the corresponding word embeddings. See torch.nn.Embedding for more details.
torch.nn — PyTorch 1.10.1 documentation
pytorch.org › docs › stablenn.ConvTranspose3d. Applies a 3D transposed convolution operator over an input image composed of several input planes. nn.LazyConv1d. A torch.nn.Conv1d module with lazy initialization of the in_channels argument of the Conv1d that is inferred from the input.size (1). nn.LazyConv2d.
python - Embedding in pytorch - Stack Overflow
stackoverflow.com › questions › 50747947Jun 07, 2018 · nn.Embedding holds a Tensor of dimension (vocab_size, vector_size), i.e. of the size of the vocabulary x the dimension of each vector embedding, and a method that does the lookup. When you create an embedding layer, the Tensor is initialised randomly. It is only when you train it when this similarity between similar words should appear.