Normalize — Torchvision main documentation
pytorch.org › vision › torchvisionNormalize a tensor image with mean and standard deviation. This transform does not support PIL Image. Given mean: (mean[1],...,mean[n]) and std: (std[1],..,std[n]) for n channels, this transform will normalize each channel of the input torch.*Tensor i.e., output[channel] = (input[channel] - mean[channel]) / std[channel]
torch.nn.functional.normalize — PyTorch 1.10.1 documentation
pytorch.org › torchWith the default arguments it uses the Euclidean norm over vectors along dimension 1 1 1 for normalization. Parameters. input – input tensor of any shape. p – the exponent value in the norm formulation. Default: 2. dim – the dimension to reduce. Default: 1. eps – small value to avoid division by zero. Default: 1e-12
python - Pytorch normalize 2D tensor - Stack Overflow
stackoverflow.com › pytorch-normalize-2d-tensorDec 30, 2020 · class Dataset(torch.utils.data.Dataset): 'Characterizes a dataset for PyTorch' def __init__(self, input_tensor, transform = transforms.Normalize(mean= 0.5, std=0.5)): self.labels = input_tensor[:,:,-1] self.features = input_tensor[:,:,:-1] self.transform = transform def __len__(self): return self.labels_planned.shape[0] def __getitem__(self, index): # Load data and get label X = self.features[index] y = self.labelslabels[index] if self.transform: X = self.transform(X) return X, y