Applying a function along a numpy array - Stack Overflow
stackoverflow.com › questions › 43024745Mar 26, 2017 · Try to use numpy.vectorize to vectorize your function: https://docs.scipy.org/doc/numpy/reference/generated/numpy.vectorize.html This function defines a vectorized function which takes a nested sequence of objects or numpy arrays as inputs and returns an single or tuple of numpy array as output. import numpy as np import math # custom function def sigmoid(x): return 1 / (1 + math.exp(-x)) # define vectorized sigmoid sigmoid_v = np.vectorize(sigmoid) # test scores = np.array([ -0.54761371, 17 ...
pandas - apply custom function in numpy array - Stack Overflow
https://stackoverflow.com/questions/5610597413.05.2019 · apply custom function in numpy array. Ask Question Asked 2 years, 8 months ago. Active 2 years, 8 months ago. Viewed 2k times -1 I have a list, mylist=np.array([120,3,10,33,5,54,2,23,599,801]) and a function: def getSum(n): n=n ...
numpy.apply_along_axis() in Python - GeeksforGeeks
www.geeksforgeeks.org › numpy-apply_along_axis-pythonAug 06, 2021 · The numpy.apply_along_axis() function helps us to apply a required function to 1D slices of the given array. 1d_func(ar, *args) : works on 1-D arrays, where ar is 1D slice of arr along axis. Syntax : numpy.apply_along_axis(1d_func, axis, array, *args, **kwargs) Parameters : 1d_func : the required function to perform over 1D array. It can only be applied in 1D slices of input array and that too along a particular axis.
numpy.apply_along_axis — NumPy v1.22 Manual
numpy.org › generated › numpyJun 22, 2021 · Apply a function to 1-D slices along the given axis. Execute func1d (a, *args, **kwargs) where func1d operates on 1-D arrays and a is a 1-D slice of arr along axis. This is equivalent to (but faster than) the following use of ndindex and s_, which sets each of ii, jj, and kk to a tuple of indices:
How to Map a Function Over a NumPy Array (With Examples)
www.statology.org › numpy-mapSep 16, 2021 · import numpy as np #create NumPy array data = np. array ([1, 3, 4, 4, 7, 8, 13, 15]) #define function my_function = lambda x: x*2+5 #apply function to NumPy array my_function(data) array([ 7, 11, 13, 13, 19, 21, 31, 35]) Here is how each value in the new array was calculated: First value: 1*2+5 = 7; Second value: 3*2+5 = 11; Third value: 4*2+5 = 13; And so on. Example 2: Map Function Over Multi-Dimensional NumPy Array