Overview of Pandas Data Types - Practical Business Python
pbpython.com › pandas_dtypesMar 26, 2018 · In order to convert data types in pandas, there are three basic options: Use astype () to force an appropriate dtype Create a custom function to convert the data Use pandas functions such as to_numeric () or to_datetime () Using the astype () function The simplest way to convert a pandas column of data to a different type is to use astype () .
pandas.DataFrame.astype — pandas 1.3.5 documentation
pandas.pydata.org › pandasdtypedata type, or dict of column name -> data type Use a numpy.dtype or Python type to cast entire pandas object to the same type. Alternatively, use {col: dtype, …}, where col is a column label and dtype is a numpy.dtype or Python type to cast one or more of the DataFrame’s columns to column-specific types. copybool, default True
pandas.DataFrame.dtypes — pandas 1.3.5 documentation
pandas.pydata.org › pandaspandas.DataFrame.dtypes¶ property DataFrame. dtypes ¶ Return the dtypes in the DataFrame. This returns a Series with the data type of each column. The result’s index is the original DataFrame’s columns. Columns with mixed types are stored with the object dtype. See the User Guide for more. Returns pandas.Series. The data type of each ...
Overview of Pandas Data Types - Practical Business Python
https://pbpython.com › pandas_dty...Pandas Data Types ; object, str or mixed, string_, unicode_, mixed types ; int64, int, int_, int8, int16, int32, int64, uint8, uint16, uint32, ...