Piecewise Polynomial Interpolation
www.cs.cornell.edu › courses › cs4210Piecewise Polynomial Interpolation §3.1 Piecewise Linear Interpolation §3.2 Piecewise Cubic Hermite Interpolation §3.3 Cubic Splines An important lesson from Chapter 2 is that high-degree polynomial interpolants at equally-spaced points should be avoided. This can pose a problem if we are to produce an accurate interpolant across a wide
8 Piecewise Polynomial Interpolation - Radford
www.radford.edu › ~thompson › Fall108 Piecewise Polynomial Interpolation 8.1 Pitfalls of high order interpolation Suppose we know the value of a function at several points on an interval and we wish to find an interpolating function that we can use to approximate the function at all other points in the interval. We know from the previous section that if we have N + 1 function ...
11 Polynomial and Piecewise Polynomial Interpolation
www.math.kent.edu › ~reichel › courses11 Polynomial and Piecewise Polynomial Interpolation Let f be a function, which is only known at the nodes x1,x2,...,x n, i.e., all we know about the function f are its values y j = f(x j), j = 1,2,...,n. For instance, we may have obtained these values through measurements and now would like to determine f(x) for other values of x. Example 11.1
Piecewise Polynomial Interpolation - USM
www.math.usm.edu › lambers › mat460Piecewise Polynomial Interpolation If the number of data points is large, then polynomial interpolation becomes problematic since high-degree interpolation yields oscillatory polynomials, when the data may t a smooth function. Example Suppose that we wish to approximate the function f(x) = 1=(1 + x2) on the interval
PIECEWISE POLYNOMIAL INTERPOLATION
homepage.divms.uiowa.edu › ~atkinson › ftpPIECEWISE POLYNOMIAL INTERPOLATION Recall the examples of higher degree polynomial in-terpolation of the function f(x)= ³ 1+x2 ´−1 on [−5,5]. The interpolants Pn(x) oscillated a great deal, whereas the function f(x) was nonoscillatory. To obtain interpolants that are better behaved, we look at other forms of interpolating functions ...